Archive for February, 2016

Latest Reviews (23/ii/2016)

Machina MundiThe Invention of Science: A New History of the Scientific Revolution, David Wootton (Allen Lane 2015)

Wandering WondersPlankton: Wonders of the Drifting World, Christian Sardet (The University of Chicago Press 2015)

Love BuzzA Buzz in the Meadow, Dave Goulson (Jonathan Cape 2014)

Quake’s ProgressThe Million Death Quake: The Science of Predicting Earth’s Deadliest Natural Disaster, Roger Musson (Palgrave Macmillan 2012)

Sin after CinGargoyle Girls from Beelzebub’s Ballsack: The Sickest, Sleaziest, Splanchnophagousest Slimefests in Scum Cinema, Dr Joan Jay Jefferson (TransToxic Texts 2016)

Or Read a Review at Random: RaRaR

Read Full Post »

The Invention of Science by David WoottonThe Invention of Science: A New History of the Scientific Revolution, David Wootton (Allen Lane 2015)

I picked up this book expecting to start reading, then get bored, start skimming for interesting bits, and sooner or later give up. I didn’t. I read steadily from beginning to end, feeling educated, enlightened and even enthralled. This is intellectual history at nearly its best, as David Wootton sets out to prove what is, for some, a controversial thesis: that “Modern science was invented between 1572, when Tycho Brahe saw a new star, and 1704, when Newton published his Opticks” (introduction, pg. 1).

He does this in a clever and compelling way: by looking at the language used in science across Europe. If there was indeed a scientific revolution and science was indeed a new phenomenon, we should expect to see this reflected in language. Were old words given new meanings? Did new words and phrases appear for previously inexpressible concepts? They were and they did. “Scientist” itself is a new word, replacing earlier and less suitable words like “naturalist”, “physiologist”, “physician” and “virtuoso”. The word “science” is an example of an old word given a new meaning. In Latin, scientia meant “knowledge” or “field of learning”, from the verb scire, “to know”.

But it didn’t mean a systematic collective attempt to investigate and understand natural phenomena using experiments, hypotheses and sense-enhancing, evidence-gathering instruments. Science in that sense was something new, Wootton claims. He assembles a formidable array of texts and references to back his thesis, which is part of why this book is so enjoyable to read. As Wootton points out, the “Scientific Revolution has become almost invisible simply because it has been so astonishingly successful.” Quotations like this, from the English writer Joseph Glanvill, make it visible again:

And I doubt not but posterity will find many things, that are now but Rumors, verified into practical Realities. It may be some Ages hence, a voyage to the Southern unknown Tracts, yea possibly the Moon, will not be more strange then one to America. To them, that come after us, it may be as ordinary to buy a pair of wings to fly into remotest Regions; as now a pair of Boots to ride a Journey. And to conferr at the distance of the Indies by Sympathetick conveyances, may be as usual to future times, as to us in a litterary correspondence. (The Vanity of Dogmatizing, 1661)

Glanvill’s prescience is remarkable and he’s clearly writing in an age of pre-science or proto-science. He wasn’t just a powerful thinker, but a powerful writer too. So was Galileo and Wootton, who has written a biography of the great Italian, conveys his genius very clearly in The Invention of Science. You can feel some of the exhilaration of the intellectual adventure Galileo and other early scientists embarked on. They were like buccaneers sailing out from Aristotle’s Mediterranean into the huge Atlantic, with a new world before them.

Wootton also emphasizes the importance of Galileo’s original speciality:

The Scientific Revolution was, first and foremost, a revolt by the mathematicians against the authority of the philosophers. The philosophers controlled the university curriculum (as a university teacher, Galileo never taught anything but Ptolemaic astronomy), but the mathematicians had the patronage of princes and merchants, of soldiers and sailors. They won that patronage because they offered new applications of mathematics to the world. (Part 2, “Seeing is Believing”, ch. 5, “The Mathematization of the World”, pg. 209)

But there’s something unexpected in this part of the book: he describes “double-entry bookkeeping” as part of that mathematical revolt: “the process of abstraction it teaches is an essential precondition for the new science” (pg. 164).

He also has very interesting things to say about the influence of legal tradition on the development of science:

Just as facts moved out of the courtroom and into the laboratory, so evidence made the same move at around the same time; and, as part of the same process of constructing a new type of knowledge, morality moved from theology into the sciences. When it comes to evidence, the new science was not inventing new concepts, but re-cycling existing ones. (Part 3, “Making Knowledge”, ch. 11, “Evidence and Judgment”, pg. 412)

Science was something new, but it wasn’t an ideology ex nihilo. That isn’t possible for mere mortals and Wootton is very good at explaining what was adapted, what was overturned and what was lost. Chapter 13 is, appropriately enough, devoted to “The Disenchantment of the World”; the next chapter describes how “Knowledge is Power”. That’s in Part 3, “Birth of the Modern”, and Wootton wants this to be a modern book, rather than a post-modern one. He believes in objective reality and that science makes genuine discoveries about that reality.

But he fails to take account of some modern scientific discoveries. The Invention of Science is a work of history, sociology, philology, and philosophy. It doesn’t discuss human biology or the possibility that one of the essential preconditions of science was genetic. Modern science arose in a particular place, north-western Europe, at a particular time. Why? The Invention of Science doesn’t, in the deepest sense, address that question. It doesn’t talk about intelligence and psychology or the genetics that underlie them. It’s a work of history, not of bio-history or historical genetics.

In 2016, that isn’t a great failing. History of science hasn’t yet been revolutionized by science. But I would like to see the thesis of this book re-visited in the light of books like Gregory Clark’s A Farewell to Alms (2007), which argues that the Industrial Revolution in England had to be preceded by a eugenic revolution in which the intelligent and prudent outbred the stupid and feckless. The Invention of Science makes it clear that Galileo was both a genius and an intellectual adventurer. But why were there so many others like him in north-western Europe?

I hope that historians of science will soon be addressing that question using genetics and evolutionary theory. David Wootton can’t be criticized for not doing so here, because bio-history is very new and still controversial. And he may believe, like many of the post-modernists whom he criticizes, in the psychic unity of mankind. The Invention of Science has other and less excusable flaws, however. One of them is obvious even before you open its pages. Like Dame Edna Everage’s bridesmaid Madge Allsop, it is dressed in beige. The hardback I read does not have an inviting front cover and Wootton could surely have found something equally relevant, but more interesting and colourful.

After opening the book, you may find another flaw. Wootton’s prose is not painful, but it isn’t as graceful or pleasant to read as it could have been. This is both a pity and a puzzle, because he is very well-read in more languages than one: “We take facts so much for granted that it comes as a shock to learn that they are a modern invention. There is no word in classical Greek or Latin for a fact, and no way of translating the sentences above from the OED [Oxford English Dictionary] into those languages.” (Part 3, “Facts”, pg. 254)

He certainly knows what good prose looks like, because he quotes a lot of it. But his own lacks the kind of vigour and wit you can see in the words of, say, Walter Charleton:

[I]t hath been affirmed by many of the Ancients, and questioned by very few of the Moderns, that a Drum bottomed with a Woolfs skin, and headed with a Sheeps, will yeeld scarce any sound at all; nay more, that a Wolfs skin will in short time prey upon and consume a Sheeps skin, if they be layed neer together. And against this we need no other Defense than a downright appeal to Experience, whether both those Traditions deserve not to be listed among Popular Errors; and as well the Promoters, as Authors of them to be exiled the society of Philosophers: these as Traitors to truth by the plotting of manifest falsehoods; those as Ideots, for beleiving and admiring such fopperies, as smell of nothing but the Fable; and lye open to the contradiction of an easy and cheap Experiment. (Physiologia Epicuro-Gassendo-Charltoniana, 1654)

The Invention of Science is also too long: its message often rambles home rather than rams. If Wootton suffers from cacoethes scribendi, an insatiable itch to write, then I feel an itch to edit what he wrote. It’s good to pick up a solid book on a solid subject; it would be even better if everything in the book deserved to be there.

But if the book weren’t so good in some ways, I wouldn’t be complaining that it was less than good in others. In fact, I wouldn’t have finished it at all and I wouldn’t be heartily recommending it to anyone interested in science, history or linguistics. But I did and I am. The Invention of Science is an important book and an enjoyable read. I learned a lot from it and look forward to reading it again.

Read Full Post »

Plankton Wonders of the Drifting World by Christian SardetPlankton: Wonders of the Drifting World, Christian Sardet (The University of Chicago Press 2015)

Originally published in French as Plancton, aux origines du vivant, this is a big book on a tiny subject. A microscopic subject, in fact. Or mostly so:

It is not easy to collect and study a drifting ecosystem consisting of a vast multitude of organisms ranging in size from less than 1 micron to tens of meters, over 10-million-fold difference. The smallest beings are viruses, and then bacteria and archaea. The largest are threadlike colonial cnidarians (siphonophores such as Praya dubia) that can reach more than 50 meters when extending their fishing filaments. (Introduction, pg. 16)

Nothing unites these organisms except the way they drift on the ocean’s currents: “plankton” is from the same Greek root as “planet”, which is literally a wandering star. And if there is life on another planet or one of its moons, it may be no stranger than some of the organisms here. And may be less so. The faintly dizzying smell of ink that rose from the pages of the copy I looked at went well with the phantasmagoric colours and shapes on those pages. Some are beautiful, some are grotesque, all remind me of a line from Aquinas: Unus philosophus fuit triginta annis in solitudine, ut cognosceret naturam apis – “One philosopher was thirty years in the wilderness that he might know the nature of a bee” (Expositio in Symbolum Apostolorum, 1273).

The philosopher at work here is the French marine biologist and planktonologist Christian Sardet, creator of the Plankton Chronicles project and a worthy heir to Jacques Cousteau, who sailed around the world to capture images of macroscopic life like whales, dolphins and squid. Sardet sails around the world to capture the microscopic.

In this, he’s also a worthy heir to Ernst Haeckel, the German biologist who first popularized the beauty of microscopic marine life in books like Kunstformen der Natur (1904), or “Artforms of Nature”. His books truly were art, because he illustrated rather than photographed his subjects, like the “siliceous skeletons of polycystine radiolarians” on page 85, which are reproduced from Kunstformen.

Something is lost in a photograph, but the door of technology can’t be closed now and some images could only be captured by a photograph, like the instant in which a misleadingly named predator meets its next meal on page 166:

The naked pteropod Clione limacia, or “sea-angel”, is a torpedo-like creature a few centimeters long. Furiously flapping its fins, it speeds through the water hunting its favorite prey, the coil-shelled thecosome pteropod Limacia helicina (lower left corner). On contact, Clione immediately ejects six buccal cones, grabs the prey, then eats it slowly with its raspy tongue. Clione roam the cold polar waters where they can reach high densities comparable to the tiny shrimp that constitute krill. Sea angels are themselves a major food for marine animals.

The photograph, “taken by Alexander Semanov in the White Sea” (off Russia), looks like a Lovecraftian deity descending on a Lovecraftian demon. Velella, a beautiful blue cnidarian that floats on the surface, propelled by the wind, is more like something from Clark Ashton Smith. There’s a photograph of a specimen of Velella about to be eaten, with gourmet-like delicacy, by a giant sun-fish.

Lovecraft and Smith would have enjoyed not just the images in this book, but the language too. The colours and shapes are phantasmagoric and so are the scientific names: from Asterionellopsis to Xystonella, from Phaeodactylum to Meganictyphanes. But the terminology is complex because it has to be and this is actually very clear writing:

These three spumellarian polycystines measure between 50 and 100 microns. To capture microscopic prey, they use membranous and cytoplasmic extensions, a peduncle called an axopode, and shorter extensions called rhizopodes that cover their entire surface. (pg. 79)

Christian Sardet translated this book himself from French with Dana Sardet and I’d like to sample it in the original. But Georgian would be even better: plankton should be written about in a strange language and beautiful alphabet. Of course, French and English are strange from the perspective of Georgian, but I don’t think the Roman alphabet could ever look beautiful to a Georgian. It’s functional and perhaps it’s good to have that contrast with the phantasmagoric.

If it is a contrast. Everything here is functional, no matter how strange or beautiful it seems:

Ctenophores owe their name to the Greek word ctene, referring to the minuscule combs comprised of thousands of fused cilia, arranged in eight rows on the gelatinous surface. The cilia of these comb plates are made of the same microtubular elements as those present in human cells. A simple nervous system controls the pulsating movement of the comb plates that act like tiny prisms, diffracting light in rainbow colors. (pg. 98)

No matter how remote ctenophores, diatoms, cephalopods, nudibranchs, tintinnids, chaetognaths and doliolids seem from humans, we have a common ancestor with them. And vertebrates are part of the plankton: larval fish drift there, so we were once part of it too. We mirror the world and the world mirrors us. But some parts of the mirror are more beautiful to look at than others and the world of plankton is certainly one of them.

Read Full Post »

19186368.jpgA Buzz in the Meadow, Dave Goulson (Jonathan Cape 2014)

A book that is both a rhapsody and a threnody: Dave Goulson celebrates nature and laments what we’re losing of it. This is what he says in the preface:

In 2003 I bought a derelict farm deep in the heart of rural France, together with thirteen hectares of surrounding meadow. My aim was to create a wildlife sanctuary, a place where butterflies, dragonflies, voles and newts could thrive, free from the pressures of modern agriculture. In particular I was keen to create a space for my beloved bumblebees, creatures I have spent the last twenty years studying and attempting to conserve. (pg. ix)

Bumblebees were the subject of his previous book, A Sting in the Tale (2013). I haven’t read that, but if it’s half as good as this I will certainly enjoy it. Perhaps it’s better: Goulson is a biologist who can both educate and entertain. Expect the unexpected here: he writes about bumblebees and wild-flowers with the same enthusiasm as he writes about cheese and wine.

He’s also good at using the particular to illustrate the general. You’ll learn a lot about science and the scientific method here, from the “robotic beetle drum” he used to study death-watch beetles to the creation of “mathematical models” for predicting outbreaks of flies at a landfill site. Biology is full of puzzles and solving one often creates another. Not that they are always easy to solve: failure and frustration are part of science too and Goulson is happy to admit his own.

But he isn’t happy about the loss of wild habitats and the quickening pace of extinctions. Homo sapiens could also be called Homo exterminans:

New Zealand was colonised much more recently, about 1,000 years ago. As there were no mammals apart from bats, giant birds evolved there, including at least eleven species of moa, the largest of which stood 3.6 metres high, the tallest bird ever to live. They must have been terribly easy to track and kill, for carbon-dating of Maori middens suggests that all eleven species were driven to extinction within just 100 years of man’s arrival. (ch. 15, pg. 242; his emphasis)

It’s a long way from French meadows to Maori middens, as the crow flies, but similar themes apply: humans have exercised power over nature without proper thought for the consequences. Science is giving us more power all the time, but will it kill us or cure us? Dave Goulson is a scientist who increases my hope of the latter.

He also links apparently disparate parts of biology: parasites are part of both botany and entomology. Yellow rattle is a hemi-parasitic plant that exploits grasses and the bumblebees that visit it are parasitized by mites. The world is a web in more ways than one and many aspects of the web are described in this happy, hopeful and highly enjoyable book.

Read Full Post »

The Million Death Quake by Roger MussonThe Million Death Quake: The Science of Predicting Earth’s Deadliest Natural Disaster, Roger Musson (Palgrave Macmillan 2012)

“As solid as the earth,” we say. That’s why even mild earthquakes are often frightening and always memorable. Suddenly you can’t rely on the earth any more: it’s not rock-steady, it’s dancing. And it might be about to dance you to death.

But Robert Musson, author of this excellent guide to the history and future of seismology, points out that even in a big earthquake you’ll usually be safe in the open away from buildings. The problem is that few people spend much time like that. Cities are getting bigger and more crowded, which is why he suggests that one day an earthquake could kill a million people or more. Tehran is one candidate. So is this:

The case of Istanbul is unnerving for another reason. The North Anatolian Fault, the great strike-slip fault that starts in eastern Turkey and dies out in the middle of the Aegean, has an interesting property. Earthquakes along it tend to occur in sequences, starting in the east and moving progressively west. Each quake, as it occurs, throws more stress on the next section of fault to the west, which then fails a few years to a decade or so later. it’s like a series of dominoes toppling. […] The current sequence began with a 7.8 magnitude event near Erzincan, at the eastern end of the fault line, in 1939. This was followed by quakes progressively further west in 1942, 1943, 1944, 1957 and 1967. Then, after a lull, the next most westerly stretch of fault broke in 1999 with the Izmit earthquake. The next stretch of fault to the west goes straight through the Sea of Marmara, just south of Istanbul. This is the next domino to fall, and it could happen at any time. (ch. 12, “Stay Safe”, pp. 233-4)

Or there could be another lull. That is one of the interesting things about earthquakes: their unpredictability. The subtitle of this book is misleading, because there is no reliable science of prediction for earthquakes. Seismologists can say in great detail why and how they occur, but they can’t say where or when or what size. We are far better at predicting the behaviour of the sky above our heads than we are at predicting the behaviour of the earth beneath our feet. Meteorologists are refining and extending their forecasts further all the time. Astronomers have been accurately predicting eclipses and planetary orbits for thousands of years.

Seismologists would like to make their discipline predictive rather than reactive, but it’s proving very difficult. Masson discusses one team of Greek seismologists who claimed to be able to predict quakes using “seismic electrical signals, or SES for short” released by “rocks once they are stressed beyond a certain degree” (ch. 8, “Next Year’s Earthquakes”, pg. 172). But the team, led by Professor Panayotis Varotsos, made their predictions by sending telegrams to each other rather than informing an official body. When the earthquake occurred, they would produce the telegram and its date-stamp: “The question that was whispered in the corridors at conference sessions was this: How many telegrams were quietly burned when the prediction failed?”

Then a “moderate earthquake” hit Athens in 1999 and although the team claimed to have predicted it, they hadn’t said so in public. Apparently stung by the criticism that followed, Professor Varotsos issued a public prediction of a larger earthquake on its way in central Greece. But it never happened and the team were no longer taken seriously.

It’s not difficult to understand why earthquake prediction is so difficult: rocks aren’t transparent and gathering data from the depths of the earth is much harder than gathering data from the sky. Seismologists would be delighted if they could realize the suggestion made by Arthur C. Clarke in his short story “The Fires Within” (1949):

Sonar, as you will know, is the acoustic equivalent of radar, and although less familiar is older by some millions of years, since bats use it very effectively to detect insects and obstacles at night. Professor Hancock intended to send high-powered supersonic pulses into the ground and to build up from the returning echoes an image of what lay beneath. The picture would be displayed on a cathode ray tube and the whole system would be exactly analogous to the type of radar used in aircraft to show the ground through cloud.

Nearly seventy years on, we’re still waiting for a geoscope like that. Seismology is still a hobbled science and earthquakes are still mysterious and frightening things. As Sherlock Holmes says in “The Adventure of the Copper Beeches” (1892): “Data! data! Data! … I can’t make bricks without clay.” But seismologists have done a lot with the limited data they’ve got, as you’ll learn here. Writing clearly and colloquially, Masson traces the history of mankind’s attempts to understand earthquakes, describes their effects on history, discusses related phenomena like volcanoes and tsunamis, and explains why seismologists don’t use the “Richter scale”. The Million Death Quake has a hyperbolic title and a misleading subtitle, but it’s one of the best popular science books I’ve come across.

Read Full Post »