Feeds:
Posts
Comments

Posts Tagged ‘Giles Sparrow’

the-universe-in-100-key-discoveries-by-giles-sparrowThe Universe in 100 Key Discoveries, Giles Sparrow (Quercus 2012)

Possibly the best book I’ve ever read on astronomy: text and images complement each other perfectly. Even the solidness of the book was right. It’s a heavy book about heavy ideas, from the beginning of the universe to its possible endings, with everything astronomical in between.

And everything is astronomical, if it’s looked at right. The elements vital for life were cooked in stars before being blasted out by supernovae. We are star-stuff that has the unique privilege – so far as we know – of being able to understand stars.

Or trying to. This book was first published in 2012, so it’s inevitably out of date, but many of the mysteries it describes are still there. And when mysteries are solved, they sometimes create new ones. Even the behaviour and composition of a celestial body as close as the Moon is still impossible for us to explain. But sometimes it’s easier at a distance: the interior of the earth can harder to study than galaxies millions of light years away, as I pointed out in “Heart of the Mother”.

In every case, however, understanding depends on mathematics. Astronomers have been building models of the heavens with shapes and numbers for millennia, but the models had to wait for two things to really become powerful: first, the invention of the telescope; second, the development of modern chemistry and physics. Whether or not there is life out there, celestial light is full of messages about the composition and movement of the stars and other bodies that generate it.

But visible light is only a small part of the electromagnetic spectrum and modern astronomy probes the universe at wavelengths far above and below it. The more data astronomers can gather, the more they can test the mathematical models they’ve built of the heavens. The best models make the most detailed predictions, inviting their own destruction by ugly facts. But when predictions fail, it sometimes means that the observations are faulty, not the models. Cosmological models predicted much more matter in the universe than we can see. Is the gap accounted for by so-called “dark matter”, which “simply doesn’t interact with light or other electromagnetic radiations at all”? (ch. 98, “Dark Matter”, pg. 396)

Dark matter is a strange concept; so is dark energy. Astronomy may get stranger still, but the cover of this book is a reminder that human beings inhabit two kinds of universe. One is the universe out there: matter and radiation, moons, planets, stars, galaxies, supernovae. The other is the universe in here, behind the eyes, between the ears and above the tongue. The cover of this book offers a vivid contrast between the swirling complexity and colour of a star-field and the sans-serif font of the title and author’s name. But the contrast is ironic too. The stars look complex and the font looks simple, but language is actually far more complex and difficult to understand than stars.

Consciousness may be far more complex still. In the end, is the value of science that it expands consciousness, offering new physical and mental sensations of discovery and understanding? The powerful and beautiful images and ideas in this book could only have been generated by science, because the universe is more inventive than we are. But without consciousness, the universe might as well not exist. Without language, we’d never be able to try and understand it. Then again, the universe seems to have invented language and consciousness too.

Advertisements

Read Full Post »

Physics in Minutes by Giles SparrowPhysics in Minutes: 200 key concepts explained in an instant, Giles Sparrow (Quercus 2014)

In Borges’ story “The Book of Sand” (1975), the narrator acquires a heavy little book that has an infinite number of pages. When he opens it, he can never find the same page twice. The discrepancy between its finite size and its infinite contents begins to prey on his mind. He decides the book is a monstrous thing and wants to get rid of it: “I considered fire, but I feared that the burning of an infinite book might be similarly infinite, and suffocate the planet in smoke.”

It’s a good story, but the central idea doesn’t work, unless you assume magic is at work. A book with an infinite number of pages would be infinitely heavy. In fact, it would instantly become a black hole and start swallowing the universe.

So I assume, anyway. I’m interested in physics but I don’t know much about it. This book is aimed at people like me. It reminded me of Borges’ Book of Sand, partly because it’s small but heavy, partly because of the density of its ideas and the weight of history behind those ideas. Each page of explanation could easily become a hundred or a thousand: physics is daunting in its scope and complexity. Some of the greatest minds in history have put centuries of effort into understanding the behaviour of matter and energy.

That’s how we got astonishing things like electronics, X-rays and the atom bomb. Physics is an intellectual over-achiever, the super-star of the sciences, the most spectacular, powerful and difficult of all. But it’s the most difficult science because it’s also the simplest. Stars and steam-engines are much less complex than societies or brains, which is why you can’t get away with talking nonsense in physics. And although mathematics governs everything, it’s the simpler things – pendulums, light-rays, atoms, stars – that we can mathematize first.

Or some of us can, at least: the highly intelligent and obsessive men, like Galileo and Isaac Newton, who began modern physics by finding ways to extract abstract mathematics from concrete realities. If they’d tried to find maths in psychology or culture, they would have failed, because those things are too complex. They had to look at much simpler things like falling objects, planetary motion and light-rays. Galileo and Newton laid the foundations and later physicists have built on them, so that physics now towers into the scientific skies, the envy and awe of those working with more complex and intractable aspects of existence.

Giles Sparrow takes his readers on a tour of the tower. I suppose you could say he’s operating an express elevator, stopping briefly on the floors and offering a brief explanation of what it contains: elastic and inelastic collisions on one floor, fluid mechanics on another, mass spectrometry, electromagnetic induction and quantum electrodynamics on more. Then the doors snap shut and the elevator shoots up another floor. But one thing is found everywhere: mathematics. Sparrow quotes a lot of equations and uses a lot of numbers. If you want to understand physics, you have to know the maths. If you don’t, there’s no way to disguise your ignorance.

The maths is beyond me, so until brain-modification arrives I won’t be able to understand physics properly. Until then, this book is a good way of glimpsing the glories of the science. It’s also the closest you’ll get to handling Borges’ Book of Sand in real life.

Read Full Post »

Front cover of The Cosmic Gallery by Giles Sparrow
The Cosmic Gallery: The Most Beautiful Images of the Universe, Giles Sparrow (Quercus 2013)

I’ve seen some of the images here on-line, but they’re better in a book. The resolution is higher and books satisfy the sense of touch and even the sense of smell in a way electronic media don’t and won’t for some time. You can leaf through The Cosmic Gallery, twist and turn the book as you please and enjoy the contrast between the ultra-modern photographs and the ancient way they are presented. The word “book” may be related to “beech”, because beeches have detachable bark that’s easy to write on. So The Cosmic Gallery combines past and present – and in more ways than one. The gorgeous star-fields here are records of not just of prehistory but of pre-humanity, because the light that made them had been travelling for millions of years when it was captured by human technology.

Some of star-photographs are so colourful and so full of grandeur, distance and antiquity that you can feel them growing like cathedrals in your head as you look at them. But their visual power isn’t accidental. These images aren’t intended purely as objective scientific records:

This book is in many ways a celebration of these amazing technological advances [in photography and computing] that have lately transformed our understanding of the universe. And yet we should not forget that the images on these pages are just as much a product of human artistry as the cave-paintings of Lascaux or the drawings of Lord Rosse [an Irish astronomer who made famous drawings of galaxies in the mid-nineteenth century]. Not only are these technical achievements an art in their own right, but also the representation of data gathered by a giant telescope or distant spacecraft is still ultimately a matter of human choice. Many of the images here make use of false or representative colours to highlight certain wavelengths or certain structures, or to bring entire invisible worlds within the narrow limits of our perception. (Introduction, pg. 11)

The star-photos are the most awe-inspiring and beautiful in the book. Some of the images from the solar system, being nearer to home and closer to the human scale, are almost domestic by comparison. But one of them reminds you of the vast scale of the solar system too: a now-famous shot of Saturn and its intricate halo of rings, taken by the Cassini probe as it looked sunward (pp. 148-9). To the left, “just inside the G ring at the ten o’clock position”, is a “pale blue dot”, easy to overlook, easy to ignore amid the splendour of the Saturnian rings. The dot is a planet called Earth, scene for all the horrors and heights of mankind. It’s a powerful reminder of how small we are even on a much-less-than-cosmic scale. But as C.S. Lewis pointed out: the ability to feel small is possible only to big creatures. Neither ants nor elephants are awed by the size, complexity and age of the universe, because neither ants nor elephants can appreciate them.

Nor can they appreciate the mathematics that permeates the universe and that ultimately is the universe. The patterns here are sometimes huge and spectacular, but the forces that shape dunes on Mar (pg. 86, 174) are shaping dunes on Earth too. And the unpredictability of a water-thread, falling, twisting and sputtering from a half-closed tap, is seen in Saturn’s chaotic satellite Hyperion, which has “no set rotation period, or even axis of rotation” (pg. 168). The swirl of colours in a close-up of Jupiter’s Great Red Spot (pp. 76-7) reminds me of swirling paint in a Francis Bacon; the “writhing mass of cells and tendrils” in sunspots (pg. 172) might almost be competing colonies of bacteria in a Petri dish, or even melted cheese on a pizza. From fire to ice, from dust to gas, from clouds to ultra-violet light, from sun-spots to melted cheese: Mathematica Magistra Mundi, Mathematics the Mistress of the World, oversees it all.

She also oversees the brains of the men – and it has been overwhelmingly men – responsible for designing and building the technology that has captured these images and brought them to the coffee-tables of the world. If we are here to go, as Brion Gysin claimed, then this book presents the looks before the leaps.

Read Full Post »