Posts Tagged ‘history of science’

The Invention of Science by David WoottonThe Invention of Science: A New History of the Scientific Revolution, David Wootton (Allen Lane 2015)

I picked up this book expecting to start reading, then get bored, start skimming for interesting bits, and sooner or later give up. I didn’t. I read steadily from beginning to end, feeling educated, enlightened and even enthralled. This is intellectual history at nearly its best, as David Wootton sets out to prove what is, for some, a controversial thesis: that “Modern science was invented between 1572, when Tycho Brahe saw a new star, and 1704, when Newton published his Opticks” (introduction, pg. 1).

He does this in a clever and compelling way: by looking at the language used in science across Europe. If there was indeed a scientific revolution and science was indeed a new phenomenon, we should expect to see this reflected in language. Were old words given new meanings? Did new words and phrases appear for previously inexpressible concepts? They were and they did. “Scientist” itself is a new word, replacing earlier and less suitable words like “naturalist”, “physiologist”, “physician” and “virtuoso”. The word “science” is an example of an old word given a new meaning. In Latin, scientia meant “knowledge” or “field of learning”, from the verb scire, “to know”.

But it didn’t mean a systematic collective attempt to investigate and understand natural phenomena using experiments, hypotheses and sense-enhancing, evidence-gathering instruments. Science in that sense was something new, Wootton claims. He assembles a formidable array of texts and references to back his thesis, which is part of why this book is so enjoyable to read. As Wootton points out, the “Scientific Revolution has become almost invisible simply because it has been so astonishingly successful.” Quotations like this, from the English writer Joseph Glanvill, make it visible again:

And I doubt not but posterity will find many things, that are now but Rumors, verified into practical Realities. It may be some Ages hence, a voyage to the Southern unknown Tracts, yea possibly the Moon, will not be more strange then one to America. To them, that come after us, it may be as ordinary to buy a pair of wings to fly into remotest Regions; as now a pair of Boots to ride a Journey. And to conferr at the distance of the Indies by Sympathetick conveyances, may be as usual to future times, as to us in a litterary correspondence. (The Vanity of Dogmatizing, 1661)

Glanvill’s prescience is remarkable and he’s clearly writing in an age of pre-science or proto-science. He wasn’t just a powerful thinker, but a powerful writer too. So was Galileo and Wootton, who has written a biography of the great Italian, conveys his genius very clearly in The Invention of Science. You can feel some of the exhilaration of the intellectual adventure Galileo and other early scientists embarked on. They were like buccaneers sailing out from Aristotle’s Mediterranean into the huge Atlantic, with a new world before them.

Wootton also emphasizes the importance of Galileo’s original speciality:

The Scientific Revolution was, first and foremost, a revolt by the mathematicians against the authority of the philosophers. The philosophers controlled the university curriculum (as a university teacher, Galileo never taught anything but Ptolemaic astronomy), but the mathematicians had the patronage of princes and merchants, of soldiers and sailors. They won that patronage because they offered new applications of mathematics to the world. (Part 2, “Seeing is Believing”, ch. 5, “The Mathematization of the World”, pg. 209)

But there’s something unexpected in this part of the book: he describes “double-entry bookkeeping” as part of that mathematical revolt: “the process of abstraction it teaches is an essential precondition for the new science” (pg. 164).

He also has very interesting things to say about the influence of legal tradition on the development of science:

Just as facts moved out of the courtroom and into the laboratory, so evidence made the same move at around the same time; and, as part of the same process of constructing a new type of knowledge, morality moved from theology into the sciences. When it comes to evidence, the new science was not inventing new concepts, but re-cycling existing ones. (Part 3, “Making Knowledge”, ch. 11, “Evidence and Judgment”, pg. 412)

Science was something new, but it wasn’t an ideology ex nihilo. That isn’t possible for mere mortals and Wootton is very good at explaining what was adapted, what was overturned and what was lost. Chapter 13 is, appropriately enough, devoted to “The Disenchantment of the World”; the next chapter describes how “Knowledge is Power”. That’s in Part 3, “Birth of the Modern”, and Wootton wants this to be a modern book, rather than a post-modern one. He believes in objective reality and that science makes genuine discoveries about that reality.

But he fails to take account of some modern scientific discoveries. The Invention of Science is a work of history, sociology, philology, and philosophy. It doesn’t discuss human biology or the possibility that one of the essential preconditions of science was genetic. Modern science arose in a particular place, north-western Europe, at a particular time. Why? The Invention of Science doesn’t, in the deepest sense, address that question. It doesn’t talk about intelligence and psychology or the genetics that underlie them. It’s a work of history, not of bio-history or historical genetics.

In 2016, that isn’t a great failing. History of science hasn’t yet been revolutionized by science. But I would like to see the thesis of this book re-visited in the light of books like Gregory Clark’s A Farewell to Alms (2007), which argues that the Industrial Revolution in England had to be preceded by a eugenic revolution in which the intelligent and prudent outbred the stupid and feckless. The Invention of Science makes it clear that Galileo was both a genius and an intellectual adventurer. But why were there so many others like him in north-western Europe?

I hope that historians of science will soon be addressing that question using genetics and evolutionary theory. David Wootton can’t be criticized for not doing so here, because bio-history is very new and still controversial. And he may believe, like many of the post-modernists whom he criticizes, in the psychic unity of mankind. The Invention of Science has other and less excusable flaws, however. One of them is obvious even before you open its pages. Like Dame Edna Everage’s bridesmaid Madge Allsop, it is dressed in beige. The hardback I read does not have an inviting front cover and Wootton could surely have found something equally relevant, but more interesting and colourful.

After opening the book, you may find another flaw. Wootton’s prose is not painful, but it isn’t as graceful or pleasant to read as it could have been. This is both a pity and a puzzle, because he is very well-read in more languages than one: “We take facts so much for granted that it comes as a shock to learn that they are a modern invention. There is no word in classical Greek or Latin for a fact, and no way of translating the sentences above from the OED [Oxford English Dictionary] into those languages.” (Part 3, “Facts”, pg. 254)

He certainly knows what good prose looks like, because he quotes a lot of it. But his own lacks the kind of vigour and wit you can see in the words of, say, Walter Charleton:

[I]t hath been affirmed by many of the Ancients, and questioned by very few of the Moderns, that a Drum bottomed with a Woolfs skin, and headed with a Sheeps, will yeeld scarce any sound at all; nay more, that a Wolfs skin will in short time prey upon and consume a Sheeps skin, if they be layed neer together. And against this we need no other Defense than a downright appeal to Experience, whether both those Traditions deserve not to be listed among Popular Errors; and as well the Promoters, as Authors of them to be exiled the society of Philosophers: these as Traitors to truth by the plotting of manifest falsehoods; those as Ideots, for beleiving and admiring such fopperies, as smell of nothing but the Fable; and lye open to the contradiction of an easy and cheap Experiment. (Physiologia Epicuro-Gassendo-Charltoniana, 1654)

The Invention of Science is also too long: its message often rambles home rather than rams. If Wootton suffers from cacoethes scribendi, an insatiable itch to write, then I feel an itch to edit what he wrote. It’s good to pick up a solid book on a solid subject; it would be even better if everything in the book deserved to be there.

But if the book weren’t so good in some ways, I wouldn’t be complaining that it was less than good in others. In fact, I wouldn’t have finished it at all and I wouldn’t be heartily recommending it to anyone interested in science, history or linguistics. But I did and I am. The Invention of Science is an important book and an enjoyable read. I learned a lot from it and look forward to reading it again.


Read Full Post »

Physics in Minutes by Giles SparrowPhysics in Minutes: 200 key concepts explained in an instant, Giles Sparrow (Quercus 2014)

In Borges’ story “The Book of Sand” (1975), the narrator acquires a heavy little book that has an infinite number of pages. When he opens it, he can never find the same page twice. The discrepancy between its finite size and its infinite contents begins to prey on his mind. He decides the book is a monstrous thing and wants to get rid of it: “I considered fire, but I feared that the burning of an infinite book might be similarly infinite, and suffocate the planet in smoke.”

It’s a good story, but the central idea doesn’t work, unless you assume magic is at work. A book with an infinite number of pages would be infinitely heavy. In fact, it would instantly become a black hole and start swallowing the universe.

So I assume, anyway. I’m interested in physics but I don’t know much about it. This book is aimed at people like me. It reminded me of Borges’ Book of Sand, partly because it’s small but heavy, partly because of the density of its ideas and the weight of history behind those ideas. Each page of explanation could easily become a hundred or a thousand: physics is daunting in its scope and complexity. Some of the greatest minds in history have put centuries of effort into understanding the behaviour of matter and energy.

That’s how we got astonishing things like electronics, X-rays and the atom bomb. Physics is an intellectual over-achiever, the super-star of the sciences, the most spectacular, powerful and difficult of all. But it’s the most difficult science because it’s also the simplest. Stars and steam-engines are much less complex than societies or brains, which is why you can’t get away with talking nonsense in physics. And although mathematics governs everything, it’s the simpler things – pendulums, light-rays, atoms, stars – that we can mathematize first.

Or some of us can, at least: the highly intelligent and obsessive men, like Galileo and Isaac Newton, who began modern physics by finding ways to extract abstract mathematics from concrete realities. If they’d tried to find maths in psychology or culture, they would have failed, because those things are too complex. They had to look at much simpler things like falling objects, planetary motion and light-rays. Galileo and Newton laid the foundations and later physicists have built on them, so that physics now towers into the scientific skies, the envy and awe of those working with more complex and intractable aspects of existence.

Giles Sparrow takes his readers on a tour of the tower. I suppose you could say he’s operating an express elevator, stopping briefly on the floors and offering a brief explanation of what it contains: elastic and inelastic collisions on one floor, fluid mechanics on another, mass spectrometry, electromagnetic induction and quantum electrodynamics on more. Then the doors snap shut and the elevator shoots up another floor. But one thing is found everywhere: mathematics. Sparrow quotes a lot of equations and uses a lot of numbers. If you want to understand physics, you have to know the maths. If you don’t, there’s no way to disguise your ignorance.

The maths is beyond me, so until brain-modification arrives I won’t be able to understand physics properly. Until then, this book is a good way of glimpsing the glories of the science. It’s also the closest you’ll get to handling Borges’ Book of Sand in real life.

Read Full Post »

Front cover of Granite and Grit by Ronald TurnbullGranite and Grit: A Walker’s Guide to the Geology of British Mountains, Ronald Turnbull (Francis Lincoln 2011)

For a small country, Britain has had a big influence on the world. Like a lot of other things, modern geology started here. There are several reasons for that and one is very simple: pioneering geologists had mountains of material to work with. According to the author, “Britain has the most varied geology of any country in the world.” This is an excellent introduction to the rocks of the realm, from gneiss in the Outer Hebrides to granite on Dartmoor. I like the way Turnbull discusses not only how rocks affect your eyes – their colour, texture and contours – but also how they affect your boots. He’s a hillwalker, not a professional geologist, so he conveys a strong sense of place and of how Britain’s landscape varies. But there’s more than geological variation here: Britain isn’t just rich in rocks and its landscape is shaped by more than physics and chemistry. This is the caption to one spectacular photo of a misty mountain:

Bwlch y Saethau, where according to legend King Arthur battled his nephew Mordred; behind, Y Lliwedd stands at the centre of a far greater act of violence, the Lower Rhyolite Tuff event. (ch. 10, “Redhot Flying Avalanches: Ignimbrites in Snowdonia”, pg. 98)

Britain’s varied mountains are named in Britain’s varied languages: Welsh, English and Gaelic give different flavours to the landscapes they describe, from Carnedd Dafydd to Eskdale, from Ingleborough to Stuc a’ Chroin, from Ardnamurchan to Mynydd Mawr. But English names split into Norse and Anglo-Saxon, which have different flavours too. Underlying all these languages is a common ancestor, just as some very different rocks have common ancestors too. Heat, compression and erosion change rocks; time, separation and mutation change languages. So Turnbull is writing about two kinds of history as he discusses different parts of Britain: geological history and linguistic history.

Linguistics dwarfs geology in complexity, but geology dwarfs linguistics in time. To understand why Britain looks the way it does, you have to go back billions of years and trace its movement over many thousands of kilometres. You also have to study seemingly exotic things like volcanoes, glaciers and tropical botany, all of which are central parts of Britain’s geology. Turnbull is a relaxed but knowledgeable guide to some big events and some big transformations and because he isn’t a professional he knows how to write for a general reader. He doesn’t just inform, he re-orientates: you won’t look at Britain in the same way:

Black pointy islands of volcanic ash rise above the sea, the water around them a froth of falling ash. The shores of the new islands get washed away by tsunamis as chunks of other islands fall into the sea. Lava slides down and then runs level, to form black land made of glass. The glassy ground crackles as it cools, and then quickly weathers to orange shards and gravel. Showers of sharp-edged volcanic rubble fall into the sea, forming seabed layers 300m deep which will eventually be the summit of Snowdon itself. (ch. 10, pp. 103-4)

Geology is like cuisine in reverse: from the cooked dish you have to work out the recipe. Landscapes that seem inert can have cataclysmic pasts, full of fire and thunder or flood and frost. There are centuries of ingenious deduction and painstaking observation behind the chatty text and attractive photos in this book, but there are still mysteries to solve. More maths will be needed, because matter obeys mathematical rules in all its transformations, whether geological or culinary. And those material transformations have immaterial parallels in linguistics and sociology, where maths is the key to understanding too. And science itself has metamorphosed and mutated. Geology is an important subject not just for its contemporary research but also for its influence on other fields. It made scientists realize the vast age of the earth. Charles Darwin used that idea to transform biology. Like the pioneering geologists, he was British. That isn’t a coincidence and it’s something else that increases the power of this book. The planet starts here. So does the universe.

Read Full Post »